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1. Introduction and notation

In the recent years, a new attention has been given to reaction-diffusion problem which involve an integral over
the spatial domain of a function of the desired solution on the boundary conditions; see [1 — 21]. The purpose
of this paper is to prove the existence and uniqueness of a solution for the following non linear reaction diffusion
problem with only integral conditions.

The plan of this paper is as follows. In section 2 we give some notations used through out the paper. Section 3

is devoted to statement of the problem. In section 4 we construct an approximate solution using finite element
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Finite Element Method and numerical study for a super-linear reaction-diffusion problem with integral conditions

method. in section 5 we give some a priori estimates. Finally in the section 6 we prove the convergence and we
give the existence result where we prove the uniqueness and the continuous dependence of solution.
Let L? (Q) be the usual space of square integrable functions ; its scalar product is denoted by (.,.) and its

associated norm by ||.||]. We denote by Cy (£2) the space of continuous functions with compact support in €.

Definition 1.1.
We denote by B3* (Q2) called the Bouziani space, the Hilbert space defined of Cj (Q2) for the scalar product

(Z7w)35”(9) :/S;”Z.S;"wdx, (1)
Q

where

Syz = 7(:5_5)“1*12
= [ @

by the norm of the function z from B3" (), the nonnegative number

1

2
oo = ([ @72 r) " <. @

then the inequality
i < L2 e, m 3)
By (Q) = 2 B;nfl(g) ’ -
holds for every z € By~ (Q), and the embedding
By~ (Q) = B (Q), (4)

is continuous .

Remark 1.1.
If m = 0, the space B3 () coincides with L? (Q).

Definition 1.2.
We denote by L () the space consisting of elements z (z) of the space L? (Q) verifying

/mkz(a:)dx:O(kzo,l),
Q

Let X be a space with a norm denoted by ||.||

Definition 1.3.
(i) Denote by L? (I, X) the set of all measurable abstract functions u (.,t) from I into X such that

1
2
\mm@m=(ﬁw@m&@ < oo, (5)

(ii)Let C (I; X) be the set of all continuous functions u (.,¢) : I — X with

el ) = max [l (., 8) < oo
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Lemma 1.1.
Let be v : [0,T] — H be a Bochner integrable function and let A C [0,T], any measurable subset, so: i) the
Junction ||v ()| g : [0, T] — H is Lebesgue integrable and we have,

\Av@ﬁks/ﬂwwH@ (©)

i1) for each o € H, the function (v(.),¢)y : [0,T] = R is Lebesgue integrable and we have,

v (t)dt, = (v(t),p)ydt. (7)
(/ )=/,
Lemma 1.2.

Let M be a linear closed subspace from a Hilbert space H. So for every h € H, there exists a unique u € M such
that:

b —ully = min A — ol (8)

the element u is called the orthogonal projection of h on M relatively to the inner product (.,.) and we note
u = Pyh. Furthermore, we have the following Pythagorean relation

11117 = I ParhllZ + 1l — Parhl - )

Theorem 1.1 (Cauch- Schwarz inequality).
Let be f and g two functions of L* (Q) ; so

fgell(Q),
and

/ﬂ 1.9l < UFle - llz - (10)

Theorem 1.2 (The Cauchy inequality).
Let be a,b € R, and every € > 0, we have

€ 2 15
bl < = —b”.
labl < 507+ o

Lemma 1.3 (Gronwall lemma).
Let h(t) and y (t) be two real integrable functions on the interval I, h (1) nondeceasing , and ¢ a positive constant

if
y(t)gh(t)-l—c/ty(r)dT vtel,
0
then
y (t) < h(t)e” vt e .

Definition 1.4.
We call a nonlinear differential system the system of the form

X (t)=F[X (1) (11)
t is a real
w1 (t) fi(t)
w2 (t) f2 (1)
X () = , F@)= ' ;
T (1) fn'(t)

where f; are continuous functions.
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Definition 1.5.
Let be
ICR — R"

X(): ) (12)

X is the solution of the system (11), if X is derivable and continuous function, for every each t € I, X (t) € I
and X (t) = F (X (1)).

Theorem 1.3 (The unicity of solution).
We suppose that F is derivable continuous function on E C R™ . So for every each initial condition for to € I
and Xo € E the solution of the system (11) if it exists it is unique.

Theorem 1.4 (Local existence of solution).
Let be to € R and Xo € R™ . If F is derivable continuous on Xo, it exists h > 0 such that the solution of the
system (11) verifying X (to) = Xo exists on the interval [to,to + h] .

Theorem 1.5 (Global existence of solution).
If F is derivable continuous function onR™ and if the solution of the system (11) verifying X (0) = Xo is bounded
on the interval which it exists so the solution exists on I = [0,400].

See artical [18].

2. Statement of the problem

Let be the problem

dulet)  &ula,t) b
o Y g W@y =r), =

with the initial condition

u(x,0) = u’, (14)

and the boundary integral conditions

fol u(z,t)dz =0 (15)
fol zu (z,t)de =0 ’

witht €[0,7], T <oo,a€R},pe N, z€]0,1].
Through the paper, we will make the following assumptions:

(Hy): felL? (O,T; B3 (0, 1)) , (Hs) : u® € V where V is defined in the following way

V:{UGLQ(O,I):/Olv(:c)dx:/olxv(x)dxzo}. (16)

Since V is the null space of the continuous linear mapping

g:L*(0,1) — R* & — g(®) = (/01<I>(x)dx,/olx<1>(ac)dac>;
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it is closed linear subspace of L? (0, 1), consequently V is a Hilbert space for (.,.). Moreover for a given function
w (z,t), the notation w (t) is used for the same function considered as an abstract function of the variable t. (Hs)

: f(t,w) € L*(0,1) for each (t,w) € I x L*(0,1) and the following Lipschitz condition
Hf (tvw) - f (t/v w,)HB%(O,l)
< M It =1 (14wl pyo + 10 gy ) + 0 = 0y o) -

Definition 2.1.
A weak solution of problem (13) — (15) means a function

w:[0,T) — L*(0,1)
such that

(i) we L?(0,7;B5(0,1)),

ii) u has a strong derivative du e L?(0,T; B4 (0,1)), (iii) (0) = u°, (iv) The identity :
dt

(dgit)7v> B1(0,1) +a(u(t),v) — (u” (2,t) ’”)35(0,1) = (f(z,t),v).

3. Construction of an approximate solution

Let ¢1, 2, ..., N, ... be a Hilbertian basis of V, such that we devise [0, 8] on N + 1 parts (N € N*) and we pose

1

h:m,tz:lh,lzo71,2,,N+1
We define functions (¢;) by
w7 zio1 <z < 14,
Ti — Ti—1
@i (v) = ﬂ, i <z < w1,
Tit1 — Zi
0, atlleurs.

For every each functions (y;) are of degree 1 with ¢; (z;) = d;;.
Let (V) the subspace from V generated by the first n elements of the basis. We have to find for each n € N*,

the approximate solution which has the following form.
Un (2,1) =D gin () @i (x),  (2,8) € (0,1) x [0,T7, (17)
i=1

where g;n € H* (0,T) are unknown functions for the moment. As we have that u° € V and V,, is a closed subspace
from V, we can define in a unique way u2 by

uwd = Pvnuo, (18)

11
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where Py, is define in lemma (1). By the virtue of the density of UV, in V it follows that

uy —u’ in V if n — oo. (19)

‘We note by (g?n) the coordinates of u2 in the basis (pi);—, of V, that is

Up =Y ginpis (20)
i=1
so, we have to find

un € H'(0,T;V,,) (21)

solution of the differential system

dun,
(thpj) +a(un7¢j)*(uﬁa¢j)32}(o,1) = (f (xvt)asoj)B%(O,l)v (22)
B1(0,1)

un (0) = un, (23)

By replacing u, by (17) and by using the following notations
Qi = (802‘780]')35(9) y A= (aij)lgi,jgna

Bi; = (¢i, ¢;5) , b= (Bij)1g¢,j§nv

Q W

C; = (ugv%)sg(oa) ) = (Cj)lgjgn,

F ()= () my0m » F 0 = (F (), |

and
a0 0 = (g (s 35 = (%)™,

The system (22) can be written as follows

—
Addit" + B+ C = F (1), (24)

which is a nonlinear differential system.
We easily prove that A is regular matrix, and by virtue definition (1.4), (1.5) and Theorems (1.3), (1.4) and (1.5),
so the system (24) has a unique solution g, € [H'(0,7)]".

Lemma 3.1.
For every n > 1, the problem (22) — (23) has a unique solution u, € H" (0,T;V,) which has the form (17).
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4. A-priori estimates for approximations

Lemma 4.1.

For every n € N* functions u, € H' (0,T;V,,) solutions of (22) verify

t
K
/ l[unll* d7 < ———5
0

25)
p b) (
20—1-2
“ 2
and )
t
/ dun dr < L, (26)
o Il dt 30,1
where Kand L are two positive constants such that,
> L +
a> = .
2 p

Proof.  Multiplying the integral identity (22) by gjn» (t) and summing up for j = 1,...,n and integrating the
resulting over (0,t), we obtain

1 t
) ||un||235(0,1) +alf, [ || d

27)
t t 1 2 (
= I (f; “n)B;(o,n dr + |, (“’5’“?1)3;(0,1) dr + 9 H“(T)LHB;(OJ) :
We have
0112 0112 1 0112
HU"HB%(OJ) < Hu HB;(OJ) < 9 Hu H ’ (28)
SO
t
a3 0,1y + 20 i P )
2
= 2fot (f, u")B%(O,l) dr + 2[(: (U‘Z7U")B%(O,l) dr + i HUOH )
hence, thanks to the Cauchy inequality (29)
g 0.1y + 20 ¢ lun > dr
<t 2 t 2 . op 2
<IN, drt e, dr I, dr (30)
t 2 1y o2
n d 3 )
o lunlls, o, dr+ g 1]
but we have
1
g0y < 3 lunl®
we get
t
||Un||§3;(0,1) + (2a—-1) fo ||“nH2 dr (31)
¢ 1 2 t
TR, dr SO S,
1,

B3 (0,1)

13
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we have that

_ 1,
fo H Bl(o 1) dr = fo Hup “HBl(O 1 dr
2 rtl,p—1
< LR dr Ll )
1
<LpaE,, )dT+1fo funl?
substituting (32) in (31) we have
2 9\ rt 2
By + (20~ 5 ) el ar -
33
1 012 t -1
Y TR T ] el
But
1 _rt -2 2
I R uﬂum ar
1 t —2112
< *fo Huﬁ H T+ 5 fo K "H51<o 1 (34)
<= p—2 - s
< 5 0l HM L dr Syl dr
Since (34) so (33) can be written
1 1
oo + (20 = 1= § = 3 ) il -
35
1 0|2 t -2
<R, drt g I R, e
after p iteration we get
lunlby o + (20— 1= 2) fi luall? ar )
1 o2 t 02
ST ey [
S0
lun By o + (20 = 1= 5) fy unl? ar .
1y op2, T
</ Hf”Bl(O L4ty [[u°]]” + 3
Let be
t
_ 2 Lyopze T
Kf/o ||f||B%(071) dr+ 4 o7+ 5 (38)
we get
HMHQB;(o,l) < K, (39)
and
/ [ —— (10)
20 —1—-7%
2
on the other hand multiplying (22) by dcgijtn and sum up for j = 1,...,n we obtain
dun ||? dun dun
Lol aggr= () e (mGe) (a1)
’ dt || gy 2 W) o W) o
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integrating (41) over (0, )

2

dun dr + a ||lun|]?
dt Bl(0,1)
t dun t P dun 0112
=2/ (f dr+2 [; U dTJraHu H ,
B3(0,1) B(0,1)
applying the Cauchy inequality, we get
2
Dol ey ?
dt Bl(0,1)
t dun t p dun 0112
=2/, (/s dr+2 [; U dTJraHu H ,
B(0,1) B(0,1)
SO )
Bnl” o fun?
dt B1(0,1) ,
0
ST, ol + e, | ar
but we have
P — p—1
L

IN

B(0,1)

3 R Huﬁ‘IHB%(Q T+ fo un |

IN

B1(0,1)
1
< ffo [ “"HBuo , dr+ KT
1 1 1
<3[BT o Bty o] £ 56
1 2 11 1
§§~§fo|| II? 1(01)d7+§~§~KT+§KT,

after p iteration we get

¢ 1 1 1
P2 < 2 4+ L
/0 ||un||B%(O7l) dr <T <2p+1 [luoll” + K <2p + 2)) ;

substituting (45) in (44) we get

2

du
IS aralul?
B1(0,1)
< LI dr +a|u®|? +T L [(w)°||* + K 1,1
0 B1(0,1) op+1 o0 ' 2) )"
Let be
t
_ 2 0112 1 1 1
—/0 117, . @7 e[ +T(2p+1 +K(27+§)>7
so we have
t 2
/ dun dr < L.
0 dt B1(0,1)

. fg H“?leQ dr + §KT see equation (39)

(42)

(44)

15
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5. Convergence and existence result

Theorem 5.1.
There exist a function v € L (0,T; V) with

du

- €L7(0.T; B3 (0,1)),

and a subsequence (Un, ), C (un), such that

Un, — u in L (0,T; V), (49)
and J
Un, du . o 1
Tk - E in L (Oa T; B2 (07 1)) ) (50)
when n — oo.
Proof.  See article [3] O

Theorem 5.2.
The limit function u from Theorem (5.1) is the unique weak solution to problem (13) — (15) in the sense of
definition (2.1) .

Proof.  One : Existence . We have to show that the limit function u satisfies all conditions (¢) — (iv) of definition
(2.1) . Obviously, in light of properties of function u the first two conditions are already seen. On the other hand,
from w (t) = u® + fot W (s)ds, t € [0,T], written in the proof of Theorem (5.1), we have directly u (0) = u°, so the
initial condition is also fulfilled, now we have to see that integral identity obeyed by w, for this, writing (22) for

n = ni and integrating on [0, ¢], it comes

Oun,, (s
(%5 e) el o)) ds
B1(0,1)

1
— [y (uh, (s) +23) B30,1) 95 N

= fot (f (‘Tﬂs)vsoj)B%(O,l) ds; vt e [OvTL Jj=1 .. n.

By performing a limit process k — oo in (51), we get owing (49) and (50)

Ou (s
B(%500) | dera o) o= 00 6) 0 gy
o

:fot (f(w75)7(pj)3%(071) ds; vt € (0,17, j=1,nk.

(52)

Differentiating this latter with respect to t we get

(8uaz(tt) ’ SOj) BL(0,1) rehes

- (up (t) ) 90]')3%(0,1) (53)

= (f (xvt) asoj)B;(O,l) vt € [OaT} B ] > 1.
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From where (iv) is obtained due the density of (U,V;,) in V . Thus, u weakly solves problem (13) — (14) . Two :

Uniqueness . Writing the problem (13) — (15) in the form

Ou (x,t) O*u(z,t)
8t — 5‘t2 - f(l‘7t,u($7t)), (54)

which

f(xvtvu(xvt)) = (u (x7t))p +f(x7t) . (55)

Let us (@, @) two weak solutions of (54) we get

da (t) ) _ ~
) + t ) = ) at ) ) 56
(0] o HOEO D =G @00, (56)
and
du (t . .
(%20)  wal@®.0 =Gt (1)
ot B1(0,1) Bl(0,1)
subtructing the identity (57) from (56) we get for v =1 — @
1d,,. . - o .
odt [[(@ — @) t”B%(O,l) +al(a—a)t]|=f (t»“)Bé(og) - [, u)B%(O,l) ) (58)

integrating (58) and putting u (¢t) = & — @ we have

la (g 00) + 20 i llu (P[P dr = 2 [ (F (7,) = £ (r,8) )y o 1)
2 [L1F (i) = F ()] () gy oy (59)
M [l ()30

IN

IN

From where Gronwalls lemma yields ||u (7) Hé% (0,1) =0 =1 =1 ; So, we have the uniqueness of the solution. [

Proposition 5.1.
The sequence (uy),, totally converges to u in L* (0,T;V).

Proof. The key point is to reason by absurdity, so we suppose that (u,) is not converging to u in L? (0, T; V)

then

Je>0,3v e L2(0,T;V), 3 (ue) C (un), : (60)
[ (e (1) = (8) v (1) ] > &0,

but (ug) ¢ is bounded in L? (0, T; V), consequently we can construct a subsequence (u5j) which weakly converges
in L? (0,T; V) towards a certain element w € L? (0,T; V), and while reasoning exactly as for the function u from
the theorem (5.1) , we prove that w is another solution for the problem (13) — (15), which implies,taking into

account uniqueness in the problem in question, that w is none other than u, so

T

lim (ue (t) —u(t),v(t))dt =0,

§—ro0 Jo

17
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which is in contradiction with (60), thus

Uun — uwin L? (0,T;V)

Theorem 5.3.
Let be u®, v € V, f, f. € L? (O,T; B} (0,1)), and let uw and us be the corresponding weak solutions satisfying
assumptions (H1) — (H3), if the following inequality

If (t,v) — fo (t,w)||B%(0’1) <a(t)+b|v-— wHB;(O,l) , vVt e I,Vv,w eV, (61)

holds for some continuous nonnegative a (t) € I and some constant b > 0 we have the estimate
2 0 012 ¢ 2 (2b+1)t
[Ju — u*||3%(0’1) < (Hu — u*HB%(O’l) Jr/o a” (1) d7'> e . (62)
Proof. We take the difference identities (56) — (57) corresponding to u, u. and f, f«

t
ot — vl .0y + 200 f7 flu (7) — e (7)) dir

<l - (63)

ul;
*11B3(0,1)

F2 [ IIf (mw) = fe (1)l gy 0,1) - 14 (7) = ue (D 10,1 A7

applying the elementary algebraic inequality
208 <a’+ 8%  Va,BER,
to the second term in the right hand side, we derive

t
ot = e 3301y + 20 il (7) = e ()] dr

< [l - (64)

wllf}
*11B1(0,1) ’

+ fg a® (1) dr + (2b+ 1) fol flu(T) — us (7')||2B;(0,1) dr

from which the estimate (62) follows by means of Gromwell’s lemma. O

6. Numerical study with finite difference schemes

For the numerical solution of the considered problem (1.1)-(1.4) we apply the finite difference technique. First,
we take a positive integers N and M. We divide the intervals [0, 1] and [0, 7] into M and N subintervals of equal
lengths h = 1/M and k = T/N, respectively. By uj, we denote the approximation to u at the it" grid-point and
n*" time step. The Grid point (z;, t,) are given by z; =4h, i =0, 1, 2, ..., M, t, =nk,n=0, 1, 2, ..., N.

The notations uj and f;*, are used for the finite difference approximations of u(x;, t,),f (x:, tn) respectively.
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6.1. The forward time centred space (FTCS)

We can approximate the time derivative by the forward difference quotient,and use the centred second-order

approximation for the spatial derivative of second order in (3.1) to obtain :

n+1 n n n n
u; = Uy _a(uifl_zui + Uit

. )y g

This scheme can be written as:
uitt =rul g 4 (1= 2r)ul + rufy + k(W) + f7)

fori=1,2,...M —1,n=0,1,..., N, and r = ak/h>.
This procedure is explicit and and we do not need to solve nonlinear algebraic equations. Order of accuracy of the
scheme is O(k) + O(h®). We still have to determinates two unknowns ug ™" and u}/,, for this we approximate

integrals in (2.3) numerically by trapezoidal rule ( We have chosen this approximation since it is of the same,

second, order of accuracy in space as the methods used for the interior part of the problem ):

M-—-1

1
n h n n n
/0 u(z,t +1)d$:§(u0+1+2Zuiﬂ—&-ul\jl)zo

i=1

1 h M—-1
1 1 1
/ U (:v,t’hL )dx:E(xoung +2 E :viu?Jr + xmunm) = 0.
0 i=1
Thus, we can write
M-1
+1 +1 +1
up "+ uyy :722 uy
=1
M—1
1 1 1
zoud T + xapuift = =2 E ziupt
=1
Hence we have:
n+l _ TMZ1 — 22
Ug - )
Y
nt+l _ *2 — ZoZ1
uM - Y )
where
M-1
1
z = —2 E u?+
i=1
M—1
1
zo = —2 E xiu?+
=1
and

Y::EM—Q?o#O

19
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6.2. Numerical experiments
To test the above algorithm we use example with known analytical solution as follows :

Example 6.1.
We consider the following problem

ou  0*u
E*@fu?’:f(a:,t), 0<z<l1, 0<t<T, (65)
subject to the initial condition
u (z,0) = cos(2mz), 0<z <1, (66)
and the boundary integral conditions
1
/ u (z,t)dz =0, 0<t<T, (67)
0
1
/ zu (z,t)der =0, 0<t<T, (68)
0

Where
f(z,t) = cos(2mx)(sin(t) + 4 cos(t) — cos®(t)cos® (2mx)

Then the exact solution of the problem (6.1)-(6.4) is
u (z,t) = cos(2mz)cos(t). (69)

In Table 1 and Table 2 we present results with A = 0.05,0.005 using the FTCS scheme for z = 0.1 and ¢t =
0.01,0.02,0.03, ..., 0.1.

t; FTCS exact
0.01/0.81118183|0.80897654
0.02|0.81253938|0.80885520
0.030.81332861|0.80865296

0.1 |0.81188905|0.80497528

Table 1. Some numerical results at z = 0.1 with h = 0.05 and r = 0.4

t; FTCS exact
0.01/0.80899850|0.80897654
0.02|0.80889228 | 0.80885520
0.03|0.80870046 | 0.80865296

0.1 |0.80504396|0.80497528

Table 2. Some numerical results at z = 0.1 with h = 0.005 and r» = 0.4
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