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1. Introduction

Partial differential equations play an important role in modeling many disciplines including engineering, physics,

chemistry economics, and biology, and their study has occupied mathematicians since the eighteenth century

with the work of Euler, D’Alambert, Lagrange, and Laplace...; over the last forty years many modern physi-

cal, mechanical, biological and technological phenomena, and problems have been shaped by partial differential

equations (PDEs), many physical phenomena are modeled by nonclassical parabolic problems associated with

boundary conditions.

As the first question to be asked in the theoretical study is to know if, for a nonlinear evolution equation with

initial conditions and boundary conditions, there exists at least one local solution and if it is unique in the case

considered, these problems have been solved for a large class of nonlinear evolution equations by a series of useful
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Solvability and dynamics study of a weak solution for a nonlinear parabolic problem with the bessel operator

methods and theories which have been developed, in particular since the 1960s, such as the method of Faedo

Galerkin (Compactness method), the fixed point method, the semi-group method and the monotonic iterative

method (For more details on these methods also the energy inequalities method [1–12]. Hence, it is important to

find the solution of the mathematical model in order to resolve the engineering problems.

On the other hand, the dynamic questions in the field of partial differential equations problems like the blow-

up and decay studies are considered among the most important issues because they fall under the framework

of controlling the studied phenomenon. Blow-up singularity, as one of the most remarkable properties that

distinguish nonlinear parabolic problems from the linear ones, attracted extensive attention of mathematicians in

the past few decades.

There are many works focused on the blow-up property of various parabolic equations (or systems) with homoge-

nous Newmann boundary conditions.

2. Formulation of the nonlinear problem

Let Q =
{
(x, t) ∈ R2, 0 < x < 1 and 0 < t < T

}
.

Consider the following nonlinear problem :


∂u

∂t
− a

1

x

∂

∂x

(
x
∂u

∂x

)
+ bu = f

(
x, t, u,

∂u

∂x

)
, ∀ (x, t) ∈ Q

u (x, 0) = φ (x) , ∀x ∈ (0, 1)

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0. ∀t ∈ (0, T )

(1)

Such that a, b > 0, f, φ ∈ L2 (Q) are known functions, with the following condition :

The function f is lipchitzian, i.e : there exists a positive constant k such that :

∥f (x, t, u1, v1)− f (x, t, u2, v2)∥L2(Q) ≤ k
(
∥u1 − u2∥L2(Q) + ∥v1 − v2∥L2(Q)

)
, (2)

∀ (u1, v1) , (u2, v2) ∈
(
L2 (Q)

)2
.

3. Study of the associated linear problem

3.1. Position of the associated linear problem

In the rectangular area Q = (0, 1)× (0, T ), with T < ∞, we consider the following linear problem :


∂u

∂t
− a

1

x

∂

∂x

(
x
∂u

∂x

)
+ bu = f (x, t) ∀ (x, t) ∈ Q

u (x, 0) = φ (x) ∀x ∈ (0, 1)

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 ∀t ∈ (0, T )

, (3)
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Whose parabolic equation is given as follows :

Lu =
∂u

∂t
− a

1

x

∂

∂x

(
x
∂u

∂x

)
+ bu = f(x, t), (4)

with the initial condition :

ℓu = u(x, 0) = φ (x) , x ∈ (0, 1) , (5)

the boundry condition of Neuman type :

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0. (6)

Where f and φ are known functions and a and b are a positive constants.

We note that the function φ satisfies the compatibility condition (6) :

∂φ

∂x
(1) = 0,

∂φ

∂x
(0) = 0. (7)

3.2. A priori estimate (the uniquenss of the solution)

The problem (3) can be written in the following operational form :

Lu = F , (8)

where L = (L, ℓ), with a domain of definition D (L) consisting of function u ∈ L2√
x (Q) , such that ∂u

∂t
, ∂u

∂x
and

∂2u
∂x2 ∈ L2√

x (Q) and u satisfies the boundary conditions in (6) ;

The operator L is considered from E to F , where E is the Banach space of functions u ∈ L2√
x (Q) and whose

norm :

∥u∥2E = ∥u∥2
C(0,T, L

2√
x
(0,1))

+ ∥∂xu∥2L2(0,T, L2√
x
(0,1)) + ∥u∥2L2(0,T, L2√

x
(0,1)) ,

is finite, and F is the Hilbert space of all the elements F = (f, φ) whose norm :

∥F∥2F = ∥f∥2L2(Q) + ∥φ∥2L2√
x
(0,1) ,

is finite.

Theorem 3.1.
For any function u ∈ D (L), we have the estimate :

∥u∥E ≤ k ∥Lu∥F (9)

where k is a positive constant independent of u, such that :

k =

√
eT

min{1,2a,2b}
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Proof. Multiplying the equation of the problem (3) by the following multiplicator Mu :

Mu = xu(x, t) ,

and by integrating on the Qτ = (0, 1)× (0, τ),where τ ∈ [0, T ],we obtain :

∫
Qτ

[
∂tu(x, t)− a

1

x
∂x(x∂xu(x, t)) + bu(x, t)

]
·Mu(x, t)dxdt

=

∫
Qτ

∂tu(x, t) · xu(x, t)dxdt− a

∫
Qτ

∂x(x∂xu(x, t)) · xu(x, t)dxdt

+

∫
Qτ

bu(x, t) · xu(x, t)

=

∫
Qτ

f(x, t) · xu(x, t)dxdt.

Then, we get

1∫
0

xu(x, τ)2dx+ 2a

∫
Qτ

x(∂xu(x, t))
2dxdt+ 2b

∫
Qτ

xu(x, t)2dxdt

≤
∫
Q

f(x, t)2dxdt+

1∫
0

xφ (x)2 dx+

∫
Q

xu(x, t)2dxdt

Applying Gronwall’s lemma, we find :

max
0<t<T

1∫
0

xu(x, τ)2dx+

∫
Q

x(∂xu(x, t))
2dxdt+

∫
Q

xu(x, t)2dxdt

≤ eT

min{1,2a,2b}
(

∫
Q

f(x, t)2dxdt+

1∫
0

xφ (x)2 dx)

with

C =
eT

min{1,2a,2b}
.

Thus, we write

∥u∥2
C(0,T, L

2√
x
(0,1))

+ ∥∂xu∥2L2(0,T, L2√
x
(0,1)) + ∥u∥2L2(0,T, L2√

x
(0,1)) ≤ C

(
∥f ∥2L2(Q) + ∥φ∥2L2√

x
(0,1)

)
.

Which is equivalent to

∥u∥E ≤ k ∥L∥F , where k =
√
C.
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Corollary 3.1.
If for any function u ∈ D (L), we have the following estimate :

∥u∥E ≤ k ∥F∥F , (10)

then the solution of the problem (3) if it exists, it is unique.

Proof. Let u1 and u2 two solutions of the problem (3) :

 Lu1 = F

Lu2 = F
=⇒ Lu1 − Lu2 = 0,

and since L is linear and according to (9)

∥u1 − u2∥2E ≤ k ∥0∥2F = 0,

which gives

u1 = u2.

3.3. Existence of the solution

The demonstration of the existence of the solution is based on the proof of the following items :

1. The operator

L : E −→ F

has a closure.

2. R(L) is dense in F for any u ∈ E and for any arbitrary F = (f, φ) ∈ F.

Proposition 3.1.
The operator L of E in F is closable.

Proof. Let {un} ∈ D(L) be a sequence such that :

un −→ 0 dans E, (11)

and

Lun −→ (f ;φ) in F, (12)
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we must prove that

f ≡ 0 and φ ≡ 0.

The convergence of un to 0 in E, so we have :

un −→ 0 in D
′
(Q) . (13)

From the continuity of the derivation of D
′
(Q) in D

′
(Q). then relation (13) implies :

Lun −→ 0 in D
′
(Q) , (14)

Moreover, the convergence of Lun towards f in L2(Q) gives that :

Lun −→ f in D
′
(Q) . (15)

By vertue of the uniqueness of the limit in D
′
(Q), we conclude from (14) and (15) that

f = 0.

Then,it is generated from (12) that :

ℓun −→ φ in L2√
x(0, 1).

On the other hand :

∥un∥2E = ∥un∥2C(0,T, L
2√

x
(0,1))

+ ∥∂xun∥2L2(0,T, L2√
x
(0,1)) + ∥un∥2L2(0,T, L2√

x
(0,1))

∥un∥2E ≥ ∥un∥2C(0,T, L
2√

x
(0,1))

∥un∥2E ≥ ∥un(x, 0)∥2L2√
x
(0,1)

.

By crossing the limit, we find :

lim
n→+∞

∥un∥2E ≥ ∥φ(x)∥2
L

2√
x
(0,1)

,

since un −→ 0 in E thus ∥un∥2E −→ 0 in E, we find :

∥φ(x)∥2
L

2√
x
(0,1)

≤ 0,

from where φ = 0.

Let L be the closure of L, and D(L) the domaine of definition of L :
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Definition 3.1.
The solution of the equation

Lu = F ,

is called the generalized strong solution of the problem (3) .

The theorem (3.1) is valid for a strong generalized solution, so ; we have the inequality :

∥u∥E ≤ m
∥∥Lu∥∥

F
∀u ∈ D(L). (16)

Consequently, this last inequality leads to the following corollaries :

Corollary 3.2.
()The solution of the problem (3) if it exists, it is unique and depends continuously on F ∈ F.

Corollary 3.3.
()The set R(L) of the operator L is equal to the closure R(L) of R(L).

Theorem 3.2.
For each F = (f, φ) ∈ F , the problem (3)admits a unique strong solution u = L

−1F .

Proposition 3.2.
If for ω ∈ L2 (Q) and for any u ∈ D0 (L), we have

∫
Q

Lu · ωdxdt = 0, (17)

then ω vanishes almost everywhere in Q.
D0 (L) = {u ∈ D (L) , u(x, 0) = 0}

Proof. The scalar product of F is defined by :

(Lu,W )F =

∫
Q

Lu · ωdxdt+
∫ 1

0

(ℓu) · (ω0) dx, (18)

where W = (ω, ω0).

The equality (17) can be written as follows :

∫
Q

∂u

∂t
· ωdxdt− a

∫
Q

1

x

∂

∂x

(
x
∂u

∂x

)
· ωdxdt+ b

∫
Q

u · ωdxdt = 0, (19)

which implies that ∫
Q

∂u

∂t
· ωdxdt+ b

∫
Q

u · ωdxdt = a

∫
Q

1

x

∂

∂x

(
x
∂u

∂x

)
· ωdxdt, (20)

where u,
∂u

∂t
and

∂u

∂x
∈ L

2
√
x (Q), with u satisfies the boundary conditions of (3).
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We put

u(x, t) =

t∫
0

z(x, τ)dτ = ℑtz (21)

by replacing (21) in (20) we get

∫
Q

z · ωdxdt+ b

∫
Q

ω(ℑtz)dxdt = a

∫
Q

1

x

∂

∂x

(
x
∂ℑtz

∂x

)
ωdxdt. (22)

During the establishment of the function ω, and from this last equality,we give the function ω in terms of the

function z as follows :

ω = xℑtz

since z satisfies the same conditions as the function u in (3), then z,
∂z

∂x
∈ L

2
√
x (Q), so ω ∈ L2 (Q).

Now replacing ω in (22)we obtain :

∫
Q

xzℑtzdxdt+ b

∫
Q

x(ℑtz)
2dxdt = a

∫
Q

ℑtz ·
∂

∂x

(
x
∂ℑtz

∂x

)
dxdt.

According to an integration by part and using the boundary condition of Neumann, we get :

1∫
0

x

2
(ℑtz)

2

∣∣∣∣∣∣
τ=T

τ=0

dx+ b

∫
Q

x(ℑtz)
2dxdt = −a

∫
Q

x

(
∂ℑtz

∂x

)2

dxdt ⩽ 0;

which gives ∫
Q

x (ℑtz)
2 dxdt = 0.

So, we obtain

(ℑtz) = 0.

Therefore, it becomes u = 0 in Q, which gives ω = 0 in Q. This was to be proved.

Let as now return to the proof of the theorem (3.2).

We consider a function W = (ω, ω0) ∈ R(L)⊥ and for any u ∈ D(L), then W verifies the following equality :

(Lu,W )F =

∫
Q

Lu · ωdxdt+
∫ 1

0

(ℓu) · (ω0) dx = 0.

Then, we must prove that W = 0. We suppose u ∈ D0(L) in the last equality, we obtain :

∫
Q

Lu · ω dxdt = 0, u ∈ D0(L).

From the proposition (17), we deduce that ω = 0. Thus we have :

∫ 1

0

(ℓu) · (ω0) dx = 0, u ∈ D(L). (23)
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Since the set of value of the operator ℓ is dense everywhere in the Hilbert space F with the norm

(∫ 1

0

[
(ℓu)2

]) 1
2

,

the equality (23) implies that ω0 = 0. Therefore W = 0 implies R(L) = F . This which completes the proof of

the theorem (3.2).

4. Existence and uniqueness of a weak solution of the nonlinear
problem

This section is devoted to the proof of the existence, the uniqueness and the continuous dependence of the solution

compared to the data of the nonlinear problem (1).

We consider the following auxiliary problem with the homogeneous equation :


∂w

∂t
− a

1

x

∂

∂x

(
x
∂w

∂x

)
+ bw = 0

w (x, 0) = φ (x)

∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0

, (24)

if u is a solution of the problem (1) and w is a solution of the problem (24), then y = u−w satisfies the following

problem

∂y

∂t
− a

1

x

∂

∂x

(
x
∂y

∂x

)
+ by = G

(
x, t, y,

∂y

∂x

)
, (25)

y(x, 0) = 0, (26)

∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0, (27)

where G

(
x, t, y,

∂y

∂x

)
= f

(
x, t, y + w,

∂y

∂x
+

∂w

∂x

)
. As the function f is lipchitzian the G function is also

lipchitzian,i.e there exists a positive constant k such that

∥G (x, t, u1, v1)−G (x, t, u2, v2)∥L2(Q) ≤ k
(
∥u1 − u2∥L2√

x
(Q) − ∥v1 − v2∥L2√

x
(Q)

)
, (28)

∀ (u1, v1) , (u2, v2) ∈
(
L2 (Q)

)2
.

From the result of the previous section, we deduce that the problem (24) has a unique solution which depends

continuously on the data. So it remains to prove that the problem (25)− (27) admits a unique weak solution.

First, we propose the concept of studied solution.

Let v = v (x, t) any function of L2
(
0, T ; H

1
√
x (0, 1)

)
.
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Then, multiplying (25) by xv then we integrate it on Q

∫
Q

x
∂y

∂t
vdxdt− a

∫
Q

∂

∂x

(
x
∂y

∂x

)
vdxdt+ b

∫
Q

xvydxdt

=

∫
Q

xvG

(
x, t, y,

∂y

∂x

)
dxdt.

Next, using integration by part and the conditions on y, it comes

∫
Q

x
∂y

∂t
vdxdt+ a

∫
Q

x
∂y

∂x

∂v

∂x
dxdt+ b

∫
Q

xvydxdt

=

∫
Q

xvG

(
x, t, y,

∂y

∂x

)
dxdt. (29)

It follows from (29) that

A (y, v) =

∫
Qτ

xv(x, t)G

(
x, t, y,

∂y

∂x

)
dxdt, (30)

where

A (y, v) =

∫
Q

x
∂y

∂t
vdxdt+ a

∫
Q

x
∂y

∂x

∂v

∂x
dxdt+ b

∫
Q

xvydxdt.

Definition 4.1.
A function y ∈ L2

(
0, T ; H

1
√
x (0, 1)

)
is said to be a weak solution of the problem (25)− (27) if (27) and (30) are

fulfilled.

Constructing a recurrent sequence starting with y(0) = 0, and the sequence
(
y(n)

)
n∈N

is defined as follows : given

the element y(n−1), then for n = 1, 2, 3, ...

We will solve the following problem :

∂y(n)

∂t
− a

1

x

∂

∂x

(
x
∂y(n)

∂x

)
+ by(n) = G

(
x, t, y(n−1),

∂y(n−1)

∂x

)
y(n) (x, 0) = 0

∂y(n)

∂x
(0, t) =

∂y(n)

∂x
(1, t) = 0

, (31)

according to the theorem (3.2) , each time we fix the n,the problem (31)) admits a unique solution y(n) (x, t) .

Suppose now z(n) (x, t) = y(n+1) (x, t)− y(n) (x, t), so we get the following new problem :

∂z(n)

∂t
− a

1

x

∂

∂x

(
x
∂z(n)

∂x

)
= p(n−1)(x, t)

z(n) (x.0) = 0

∂z(n)

∂x
(0, t) =

∂z(n)

∂x
(1, t) = 0

, (32)

where

p(n−1)(x, t) = G

(
x, t, y(n),

∂y(n)

∂x

)
−G

(
x, t, y(n−1),

∂y(n−1)

∂x

)
.
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Lemma 4.1.
Suppose the condition (28) is satisfied. So for the problem (32)), we have a priori estimate :

∥zn∥
L2

(
0,T ; H

1√
x
(0,1)

) ≤ c∥zn−1∥
L2

(
0,T ; H

1√
x
(0,1)

)

where

c =

√√√√√ k2 exp
(
T
2

)
min

{
1

2
, a, b

}

Proof. By multiplying

∂z(n)

∂t
− a

1

x

∂

∂x

(
x
∂z(n)

∂x

)
+ bz(n) = p(n−1)(x, t), (33)

by xz(n) (x, t) ,and we integrate it on Qτ ,we obtain :

∫
Qτ

∂z(n)

∂t
(x, t) · xz(n) (x, t) dxdt− a

∫
Qτ

∂

∂x
(x

∂z(n)

∂x
(x, t)) · z(n) (x, t) dxdt+ b

∫
Qτ

x(z(n) (x, t))2dxdt

=

∫
Qτ

p(n−1)(x, t) · xz(n) (x, t) dxdt.

We use an integration by parts by taking into account the initial condition and the boundary condition, we find :

1

2

1∫
0

x(z(n) (x, τ))2dx+ a

∫
Qτ

x(
∂z(n)

∂x
(x, t))2dt+

∫
Qτ

bx(z(n) (x, t))2dxdt.

≤ 1

2

∫
Q

x(z(n))2 +
1

2

∫
Q

x(pn−1)2

as G is lipshitzian , we get :

1

2
∥zn (x, τ) ∥2

L
2√

x
(0,1)

+ a∥∂xz
n∥2

L2
(
0,T ; L

2√
x
(0,1)

) + b∥zn∥2
L2

(
0,T ; L

2√
x
(0,1)

)
≤ 1

2
∥zn∥2

L2
(
0,T ; L

2√
x
(0,1)

) + k2∥zn−1∥2
L2

(
0,T ; H

1√
x
(0,1)

),

we apply Gronwall’s lemma then pass to the maximum on (0, T ),we find

∥zn∥2
L∞

(
0,T ; L

2√
x
(0,1)

) + ∥zn∥2
L2

(
0,T ; H

1√
x
(0,1)

)

≤
k2 exp

(
T
2

)
min

{
1

2
, a, b

}∥zn−1∥2
L2

(
0,T ; H

1√
x
(0,1)

),

So, we get

∥zn∥
L2

(
0,T ; H

1√
x
(0,1)

) ≤ c∥zn−1∥
L2

(
0,T ; H

1√
x
(0,1)

),
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where

c =

√√√√√ k2 exp
(
T
2

)
min

{
1

2
, a, b

} ,

this achieved the demonstration.

According to the criterion of the convergence of the series, then
∞∑

n=1

z(n) is said to be convergent if

√√√√√ k2 exp
(
T
2

)
min

{
1

2
, a, b

} < 1,

Which implies that

k <

√√√√√min

{
1

2
, a, b

}
exp

(
T
2

) .

As z(n) (x, t) = y(n+1)(x, t)− y(n)(x, t), and y(0)(x, t) = 0, we have

n−1∑
i=0

z(i) = y(n),

is convergente to an element y ∈ L2
(
0, T ; H

1
√
x (0, 1)

)
.

Now,we will prove that limn−→∞ y(n)(x, t) = y(x, t) is a solution of the problem (31)) by showing that y satisfies

A (y, v) =

∫
Qτ

xv(x, t)G(x, t)dxdt.

Therefore we consider the weak formulation of the problem (31)) :

A
(
y(n), v

)
=

∫
Q

x
∂y(n)

∂t
vdxdt+ a

∫
Q

x
∂y(n)

∂x

∂v

∂x
dxdt+ b

∫
Q

xvy(n)dxdt.

From the linearity of A we have :

A
(
y(n), v

)
= A

(
y(n) − y, v

)
+A (y, v) (34)

=

∫
Q

x
∂(y(n) − y)

∂t
vdxdt+ a

∫
Q

x
∂(y(n) − y)

∂x

∂v

∂x
dxdt+ b

∫
Q

xv(y(n) − y)dxdt

+A (y, v)

we apply the Cauchy Schwartz inequality on A
(
y(n) − y, v

)
, we get

∫
Q

x
∂(y(n) − y)

∂t
vdxdt+ a

∫
Q

x
∂(y(n) − y)

∂x

∂v

∂x
dxdt+ b

∫
Q

xv(y(n) − y)dxdt

≤ 2max {1, a, b} · ∥vx∥L2
(
0,T ; H

1√
x
(0,1)

) [∥(y(n) − y
)
t
∥
L2

(
0,T ; H

1√
x
(0,1)

) + ∥
(
y(n) − y

)
∥
L2

(
0,T ; H

1√
x
(0,1)

)]
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On the other hand as

y(n) −→ y in L2
(
0, T ; H

1
√
x (0, 1)

)
,

so

y(n) −→ y in L2 (0, T ; L2√
x (0, 1)

)
,

y
(n)
t −→ yt in L2 (0, T ; L2√

x (0, 1)
)
,

y(n)
x −→ yx in L2 (0, T ; L2√

x (0, 1)
)
.

Let us pass to the limit when n −→ +∞, we find

lim
n−→+∞

A
(
y(n) − y, v

)
= 0. (35)

According to (35) and by passing to the limit in (34) we obtain

lim
n−→+∞

A
(
y(n), v

)
= A (y, v) .

Thus, we have proved the following result :

Theorem 4.1.
If the condition (28) is satisfied. And

k <

√√√√√min

{
1

2
, a, b

}
exp

(
T
2

) .

Then the problem (25) admits a weak solution belonging to L2
(
0, T ; H1√

x (0, 1)
)
.

Now,we will show that the solution of the problem (25)− (27) is unique.

Theorem 4.2.
If the condition (28) is verified, then the solution is unique.

Proof. Let y1, y2 in L2
(
0, T ;H1 (0, 1)

)
be two solution of (25)− (27),then

y = y1 − y2,

is also a solution in L2
(
0, T ;H1√

x (0, 1)
)
and verifies

∂y

∂t
− a

1

x

∂

∂x

(
x
∂y

∂x

)
+ by = G

(
x, t, y,

∂y

∂x

)
, (36)

105



Solvability and dynamics study of a weak solution for a nonlinear parabolic problem with the bessel operator

y(x, 0) = 0, (37)

∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0, (38)

so, we get

∂y

∂t
− a

1

x

∂

∂x

(
x
∂y

∂x

)
+ by = Ψ(x, t), ∀ (x, t) ∈ Q

y (x, 0) = 0,

∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0

where

Ψ(x, t) = G

(
x, t, y1,

∂y1
∂x

)
−G

(
x, t, y2,

∂y2
∂x

)
.

Using the lemma (4.1) we get

∥y∥
L2

(
0,T,H1√

x
(0,1)

) ≤ c∥y∥
L2

(
0,T,H1√

x
(0,1)

),
from where

(1− c) ∥y∥
L2

(
0,T,H1√

x
(0,1)

) ≤ 0,

and as c ≤ 1, we get then

∥y∥
L2

(
0,T,H1√

x
(0,1)

) = 0,

from where

y1 = y2,

which gives the uniqueness of the solution.

5. Formulation of the nonlinear problem

Let Q =
{
(x, t) ∈ R2, 0 < x < 1 and 0 < t < T

}
.

Consider the following nonlinear problem :


∂u

∂t
− a

1

x

∂

∂x

(
x
∂u

∂x

)
+ bu = up, ∀ (x, t) ∈ Q

u (x, 0) = φ (x) , ∀x ∈ (0, 1)

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0. ∀t ∈ (0, T )

(39)

Such that a, b > 0, f, φ ∈ L2 (Q) are known functions, and by integrating on the Ω = (0, 1), we obtain :

∫
Ω

[
ut(x, t)− a

1

x
∂x(x∂xu(x, t)) + bu(x, t)

]
· xu(x, t)dx =

∫
Ω

xup+1(x, t)dx.
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Therefore

∫
Ω

ut(x, t) · xu(x, t)dx− a

∫
Ω

∂x(x∂xu(x, t)) · u(x, t)dx

+b

∫
Ω

u(x, t) · xu(x, t)

=

∫
Ω

xup+1(x, t)dxdt.

Then, by using the integration by part and the Neumann conditions, we get :

1

2

d

dt

∫
Ω

xu2(x, t)dx+ a

∫
Ω

x(∂xu(x, t))
2dx+ b

∫
Ω

xu2(x, t)dx =

∫
Ω

xup+1(x, t)dx.

So, it comes

1

2

d

dt

∫
Ω

xu2(x, t)dx− p− 1

p+ 1

∫
Ω

xup+1(x, t)dx

+

a∫
Ω

x(∂xu(x, t))
2dx+ b

∫
Ω

xu2(x, t)dx− 2

p+ 1

∫
Ω

xup+1(x, t)dx

 = 0

By putting

E (t) = a

∫
Ω

x(∂xu(x, t))
2dx+ b

∫
Ω

xu2(x, t)dx− 2

p+ 1

∫
Ω

xup+1(x, t)dx

Where E called the energy function, we find :

1

2

d

dt

∫
Ω

xu2(x, t)dx+ E (t)− p− 1

p+ 1

∫
Ω

xup+1(x, t)dx = 0

Then multiplying the main equation by ut and integrating over Ω yields

∫
Ω

xu2
t (x, t)dx+

a

2

d

dt

∫
Ω

x(∂xu(x, t))
2dx+

b

2

d

dt

∫
Ω

xu2(x, t)dx =
1

p+ 1

d

dt

∫
Ω

xup+1(x, t)dx

∫
Ω

xu2
t (x, t)dx+

1

2

d

dt

a∫
Ω

x(∂xu(x, t))
2dx+ b

∫
Ω

xu2(x, t)dx− 2

p+ 1

∫
Ω

xup+1(x, t)dx

 = 0

∫
Ω

xu2
t (x, t)dx+

1

2

dE (t)

dt
= 0
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This implies that E decresing and if E (0) < 0, then and by appling Jensen inequality

1

2

d

dt

∫
Ω

xu2(x, t)dx >
p− 1

p+ 1

∫
Ω

xup+1(x, t)dx

1

2

d

dt

∫
Ω

xu2(x, t)dx >
(p− 1)

p+ 1

(
1

2

) p−1
2

∫
Ω

xu2(x, t)dx


P+1

2

By putting

Π(t) =

∫
Ω

xu2(x, t)dx

Then, we get

dΠ(t)

dt
>

2 (p− 1)
(
1
2

) p−1
2

p+ 1
(Π(t))

P+1
2

dΠ(t)

(Π(t))
P+1

2

>
2 (p− 1)

(
1
2

) p−1
2

p+ 1
dt

Therefore, after integrating over 0, t

− 2

1− p

[
1

(Π(t))
P−1

2

− 1

(Π(0))
P−1

2

]
>

2 (p− 1)
(
1
2

) p−1
2

p+ 1
t

2

1− p

[
1

(Π(t))
P−1

2

− 1

(Π(0))
P−1

2

]
<

2 (p− 1)
(
1
2

) p−1
2

p+ 1
t

1

(Π(t))
P−1

2

<
− (p− 1)2

(
1
2

) p−1
2

p+ 1
t+

1

(Π(0))
P−1

2 1

−(p−1)2( 1
2 )

p−1
2

p+1
t+ 1

(Π(0))
P−1

2


P−1

2

< Π(t)

This implies that when t −→ T ∗ with

T ∗ =

1

(Π(0))
P−1

2

(p−1)2( 1
2 )

p−1
2

p+1

the solution u must blow up.
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