On a weighted version of the Gumbel-Barnett copula
DOI:
https://doi.org/10.55059/ijm.2022.1.2/19Keywords:
Probability, Copula, Power function, Multivariate distributions, DependenceAbstract
Copulas are increasingly widely used probabilistic tools for describing, analyzing, and modeling random variable dependencies. In this article, we offer a new copula which stands out from the others by an original definition based on the simple symmetric two-dimensional function \xyyx" multiplied with an exponential function. It can also be viewed as a special weighted version of the Gumbel-Barnett copula. We investigate its properties and relationships with other well-known copulas. Some graphical and numerical analyses of its characteristics are also provided.
References
V. Barnett, Some bivariate uniform distributions, Commun. Stat. Theory Methods 9 (1980), no. 4, 453-461.
https://doi.org/10.1080/03610928008827893
C. Chesneau, A note on a simple polynomial-sine copula, Asian J. Math. Appl. 2022 (2022), no 2, 1-14.
C. Chesneau, A new two-dimensional relation copula inspiring a generalized version of the Farlie-Gumbel-Morgenstern copula, Res. Commun. Math. Sci. 13 (2021), no. 2, 99-128.
C. Chesneau, On new types of multivariate trigonometric copulas, AppliedMath 2021 (2021), no. 1, 3-17.
https://doi.org/10.3390/appliedmath1010002
F. Durante and C. Sempi, Principles of Copula Theory, CRS Press, Boca Raton FL, 2016. ISBN: 9780429066399
https://doi.org/10.1201/b18674
A. Erem, Bivariate two sample test based on exceedance statistics, Commun. Stat. Simul. Comput. (2019), (online) 1-13.
H. Joe, Dependence Modeling with Copulas, CRS Press, Boca Raton FL, 2015. ISBN: 1466583223
https://doi.org/10.1201/b17116
R. Nelsen, An Introduction to Copulas, Springer Science+Business Media, Inc. second edition, 2006. ISBN: 1441921095
D.J. Roberts and T. Zewotir, Copula geoadditive modelling of anaemia and malaria in young children in Kenya, Malawi, Tanzania and Uganda, J. Health Popul. Nutr. 39 (2020), 8, 1-14.
https://doi.org/10.1186/s41043-020-00217-8
H. Safari-Katesari, S.Y. Samadi and S. Zaroudi, Modelling count data via copulas, Statistics, 54 (2020), no. 6, 1329-1355.
https://doi.org/10.1080/02331888.2020.1867140
J.-T. Shiau and Y.-C.. Lien, Copula-based infilling methods for daily suspended sediment loads, Water, 13 (2021), no. 12, 1701.
https://doi.org/10.3390/w13121701
S.O. Susam, Parameter estimation of some Archimedean copulas based on minimum Cram ́er-von-Mises distance, JIRSS, 19 (2020), no. 1, 163-183.
https://doi.org/10.29252/jirss.19.1.163
S.O. Susam, A new family of archimedean copula via trigonometric generator function, Gazi Univ. J. Sci., 33 (2020), no. 3, 795-802.
https://doi.org/10.35378/gujs.635032
S.O. Susam and B.H. Ucer, A goodness-of-fit test based on B ́ezier curve estimation of Kendall distribution, J. Stat. Comput. Simul., 90 (2020), no. 7, 1194-1215.
https://doi.org/10.1080/00949655.2020.1720680
A. Tavakol, V. Rahmani and J.Jr. Harrington, Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States, Environ. Res. Lett.15 (2020), no. 10, 104058.
https://doi.org/10.1088/1748-9326/abb1ef
J.P. Yela and J.R.T. Cuevas, Estimating the Gumbel-Barnett copula parameter of dependence, Rev. Colomb. Estad. 41 (2018), no. 1, 53-73.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Innovative Journal of Mathematics (IJM)
This work is licensed under a Creative Commons Attribution 4.0 International License.