Triangle inequalities in inner-product spaces

Authors

  • Martin Lukarevski
  • Dan Stefan Marinescu

DOI:

https://doi.org/10.55059/ijm.2022.1.2/29

Keywords:

Inner-product space, Tereshin's inequality, Panaitopol's inequality

Abstract

Tereshin's and Panaitopol's are known inequalities involving the median, circumradius and sides of the triangle. In this short note we generalize the inequalities to inner-product spaces. As an application we derive inequality for the median and the radius of the circumscribed sphere of an $n$-dimensional simplex.

References

R. Bellman, Why study inequalities? in General Inequalities 2, Springer (1980)

https://doi.org/10.1007/978-3-0348-6324-7_38

M. S. Klamkin, A. Meir, Ptolemy's inequality, chordal metric, multiplicative metric, Pac. J. Math. 101, No. 2, (1982), pp. 389-392

https://doi.org/10.2140/pjm.1982.101.389

D. S. Marinescu, V. Cornea, Inegalitati pentru mediane, bimediane, bisectoare, Recreatii Matematica 2, (2003) pp. 5-8

D. S. Marinescu, M. Monea. M. Opincariu, M. Stroe, Some equivalent characterizations of inner product spaces and their consequences, Filomat 29, No. 7, (2015) pp. 1587-1599

https://doi.org/10.2298/FIL1507587M

D. S. Marinescu, M. Monea, A proof of Garfunkel inequality and of some related results in inner-product spaces, Creat. Math. Inform. Vol. 26, No. 2 (2017), pp. 153-162

https://doi.org/10.37193/CMI.2017.02.05

I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Amer. Soc. 3 (1952) pp. 961-964

https://doi.org/10.1090/S0002-9939-1952-0052035-9

G. Tsintsifas, Problem E 2471, Amer. Math. Monthly 81 (1974), 82 (1975) pp. 523-524

https://doi.org/10.2307/2319756

Downloads

Published

2022-04-14

How to Cite

Lukarevski, M. ., & Marinescu, D. S. (2022). Triangle inequalities in inner-product spaces. Innovative Journal of Mathematics (IJM), 1(2), 14–17. https://doi.org/10.55059/ijm.2022.1.2/29

Issue

Section

Articles