Triangle inequalities in inner-product spaces
DOI:
https://doi.org/10.55059/ijm.2022.1.2/29Keywords:
Inner-product space, Tereshin's inequality, Panaitopol's inequalityAbstract
Tereshin's and Panaitopol's are known inequalities involving the median, circumradius and sides of the triangle. In this short note we generalize the inequalities to inner-product spaces. As an application we derive inequality for the median and the radius of the circumscribed sphere of an $n$-dimensional simplex.
References
R. Bellman, Why study inequalities? in General Inequalities 2, Springer (1980)
https://doi.org/10.1007/978-3-0348-6324-7_38
M. S. Klamkin, A. Meir, Ptolemy's inequality, chordal metric, multiplicative metric, Pac. J. Math. 101, No. 2, (1982), pp. 389-392
https://doi.org/10.2140/pjm.1982.101.389
D. S. Marinescu, V. Cornea, Inegalitati pentru mediane, bimediane, bisectoare, Recreatii Matematica 2, (2003) pp. 5-8
D. S. Marinescu, M. Monea. M. Opincariu, M. Stroe, Some equivalent characterizations of inner product spaces and their consequences, Filomat 29, No. 7, (2015) pp. 1587-1599
https://doi.org/10.2298/FIL1507587M
D. S. Marinescu, M. Monea, A proof of Garfunkel inequality and of some related results in inner-product spaces, Creat. Math. Inform. Vol. 26, No. 2 (2017), pp. 153-162
https://doi.org/10.37193/CMI.2017.02.05
I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Amer. Soc. 3 (1952) pp. 961-964
https://doi.org/10.1090/S0002-9939-1952-0052035-9
G. Tsintsifas, Problem E 2471, Amer. Math. Monthly 81 (1974), 82 (1975) pp. 523-524
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Innovative Journal of Mathematics (IJM)
This work is licensed under a Creative Commons Attribution 4.0 International License.